
TEMPORAL MODULATION FOR COMPUTATIONAL VIDEO CROSS-TALK REDUCTION

1Dookun Park, 2Ramin Samadani, 2Kar-Han Tan, and 2Dan Gelb

1Stanford University, 2Hewlett-Packard Labs

ABSTRACT

Many recent prototypes for video collaboration, digital media
sharing and gesture interfaces provide a video signal for display on a
screen or surface and capture another video signal through the same
screen or surface. The media captured in such systems, for trans-
mission or for gesture user interfaces, needs to be separated from
the displayed video. Otherwise, video cross-talk occurs. The prior,
widely used temporal multiplexing avoids cross-talk by synchroniz-
ing camera capture with screen display so that the camera only cap-
tures when the screen does not display signal. This approach suffers
from light loss (both displayed and captured) and increased display
flicker due to the lower duty cycle of the displayed signal. This pa-
per describes a new method, computational temporal modulation,
that temporally modulates the displayed signal. The intentionally
mixed signals captured by the camera are subsequently separated
using computations. Our approach results in brighter display with
less flicker and more signal captured by the camera. Experiments
using a prototype collaboration system show good quality cross-talk
reduction with light-weight real-time computation.

Index Terms— video cross-talk, visual echo cancellation, tem-
poral multiplexing, projector-camera systems.

1. INTRODUCTION

Recent prototype systems that combine collaboration with media
sharing [1, 2, 3] aim to 1) extend the productivity of remote collab-
orations with natural gaze awareness, and media sharing as though
separated by a vertical, transparent sheet of glass [1]; 2) use a table-
based interaction surface [2]; 3) allow natural use of shared digi-
tal whiteboard [3]. In addition, gesture-based interfaces [4] capture
lightfields through a display to extract gestures to serve as a user in-
terface. All these prototypes need to separate a video signal meant
for display on a screen or surface from a desired captured video sig-
nal through the same screen or surface. Otherwise, the display video
causes cross-talk or interference to the desired captured video.

Previous approaches for cross-talk reduction include wavelength
multiplexing [1] and temporal multiplexing (TM) [2, 4], but these
techniques lose half the light available, and temporal multiplexing
additionally suffers from flicker due to the low duty cycle of the
displayed signal. The binary classification approach to signal sepa-
ration in [3] applies best to spatially limited extent cross-talk such as
text and drawings. Closest to our work is the model-based approach
of [5] which preserves light, but which requires heavy computation
to implement the required colorimetric, geometric, and optical trans-
formations of a full projector-camera model.

Figure 1 shows on the left, best seen by zooming in the pdf file,
two consecutive video frames containing cross-talk with temporal
multiplexing, for example spurious cars are seen in the skyline to the
left of the person. The right shows the corresponding output frame
with cross-talk reduced using our Pass-Mask algorithm, described in
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Fig. 1. Two inputs(left) with cross-talk and output(right) with re-
duced cross-talk of our Pass-Mask algorithm
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Fig. 2. Light paths and signals for the experimental system.

Section 3.2. Our target system is illustrated in Figure 2. It consists
of a camera, a projector, and a screen. This configuration is simi-
lar to the system described in [1], but without any optical filters for
the signal separation. Light paths and signals used by the software
processing pipeline described in this paper are shown in the figure.

Figure 2 shows the local user to the left of a holographic diffus-
ing screen. The remote signal projected on the screen is the video
of the remote user together with any additional shared media con-
tent. At the same time, the camera needs to capture the video of the
local user. The remote signal is intended for the local user only. In
practice, however, the remote signal is reflected into the camera by
the screen, and this results in visual cross-talk that is transmitted to
the remote user. The human visual system is very sensitive to the
structured (not random noise) cross-talk and it must be reduced.

In temporal multiplexing [2, 4], the camera is turned off for a
half cycle, during which time the projector displays the remote sig-
nal for the local user, and the projector is turned off for the comple-
mentary half cycle, during which time the camera captures the local
signal. With this simple approach, a synchronized camera projec-
tor system can remove cross-talk without any additional processing.
However, the averaged on-off projected signal brightness is 50% as
bright as a projector always on. Moreover, display flicker may be
a problem because of the on-off cycling of projector display. The
camera also captures 50% signal due to the multiplexing. The next
section describes our approach to overcome the shortcomings of TM.
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2. PROBLEM FORMULATION

In this work, we intentionally modulate in a controlled manner the
remote signal input to the projector, capture the mixed signals with
the camera, and computationally reduce the cross-talk. Because the
limitations of the traditional TM solution are due to the projector
being fully off for half cycle, we instead only reduce the projector
brightness for half cycle. At the same time, the camera continuously
captures frames without being turned off. This results in increased
average projector brightness, reduced display flicker, and increased
camera signal. This method requires a signal reconstruction algo-
rithm, however, since the projector and the camera share the screen
at the same time and cross-talk occurs. Thus, we call this technique
Computational Temporal Modulation (CTM).

One Reconstruction Period

Local Signal

Projector
Cross talk

Camera
Capture

Crosstalk Cancellation Algorithm

Fig. 3. Timing diagram of our system. We repeat the projector signal
with different gains, removing the remote motion issue.

Figure 3 shows graphically the flow of CTM cross-talk reduc-
tion. The projector display and the camera capture are temporally
oversampled by a factor of two. During one reconstruction period,
we display the same projector frame, R(m,n), with two different
intensity gains, 1 and k, with 0 < k < 1. Repeating R(m,n) re-
moves remote signal motion, allowing simpler and more effective
signal reconstruction. During one reconstruction period, the modu-
lated remote frames are captured by the camera, mixed with the lo-
cal signals, L1(m,n) and L2(m,n). The two consecutive frames,
I1(m,n) and I2(m,n), captured by the camera are given by,

I1(m,n) = L1(m,n) +R(m,n),

I2(m,n) = L2(m,n) + kR(m,n), (1)

with (m,n) row and column pixel indices. Bold letters convey that
the pixel values are vectors with RGB components. In general, the
two consecutive local frames, L1 and L2, may differ due to motion
or noise. Our goal is to estimate the local signal L2 based on the
two captured images, I1 and I2. The signals L1, L2, R are not
available, only the mixed signals I1 and I2 and the known constant
k are inputs to the reconstruction algorithm.

3. RECONSTRUCTION ALGORITHMS

We describe two reconstruction algorithms starting from (1). The
first, the Naive algorithm, assumes no changes between the local
frames, with L1(m,n) = L2(m,n). The second, the Pass-Mask
algorithm, performs well even with local motion, benefiting from
visual masking of the remote cross-talk signal, but it does not require
expensive motion estimation. In principle, changes between local

frames may be due to a variety of causes, including motion in the
local scene or capture noise. Experiments find that motion is the
important primary cause and noise has been negligible.

3.1. Naive Algorithm : No motion in the local signal

Assuming no motion, the following reconstruction formula, the naive
algorithm may be derived from (1):

L̂2(m,n) =

(
k

1− k

)
[I2(m,n) − I1(m,n)] + I2(m,n)

= GΔI(m,n) + I2(m,n), (2)

where ΔI(m,n) = I2(m,n) − I1(m,n) and the constant G =
k/(1− k). For further interpretation, substitute for I1 and I2 of (2),
the right hand sides of (1):

L̂2(m,n) = G [ΔL(m,n) − (1− k) ·R(m,n)] + I2(m,n)

= GΔL(m,n) + L2(m,n) (3)

where ΔL(m,n) = L2(m,n)− L1(m,n).
If there is no local motion, ΔL(m,n) = 0, and L̂2(m,n) =

L2(m,n) perfectly reconstructs the local signal. When there is mo-
tion, the reconstructed signal L̂2(m,n) is a sum of the desired lo-
cal signal L2(m,n) and the additional term GΔL(m,n). Experi-
ments show objectionable motion artifacts typically occurring at the
boundaries of moving objects, confirming that the added term is of-
ten due to motion induced pixel differences, amplified by gain factor
G.

Higher sampling rates reduce ΔL(m,n), and the motion arti-
facts are somewhat reduced. This partial solution, however, even
with our 120 frames per second projector-camera system, shows ob-
jectionable motion artifacts due to the amplification. A more funda-
mental treatment is needed to reduce the motion artifacts.

3.2. Pass-Mask Algorithm

To understand the pixel adaptive Pass-Mask algorithm, the source of
pixel value variations, ΔI(m,n) is reviewed. The two main causes
for the image differences (2) are 1) pixel differences due to motion
in the local signal; and 2) modulation of the remote projector signal:

ΔI(m,n) = ΔL(m,n)− (1− k)R(m,n). (4)

In (3), the −(1 − k)R(m,n) term is required to reduce the
cross-talk, but the undesired ΔL(m,n) term generates visual arti-
facts. We would like to remove only the ΔL(m,n) component from
ΔI(m,n), but this quantity is not simple to detect and remove since
we have no prior information about the local and remote frames that
compose the mixed captured frames. The blind source separation
approach [6] to this problem is very difficult. We instead develop
an effective solution based on video enhancement that reduces visi-
ble motion artifacts. Instead of full separation of the two sources of
pixel value variation in ΔI(m,n), we classify ΔI(m,n) into two
categories, definitely affected by motion and possibly not affected by
motion, and subsequently process the pixels adaptively.

The classification is based on the characteristics of the −(1 −
k)R(m,n) term. For the R(m,n) pixel values, R(m,n) ≥ 0. The
modulation value k satisfies 0 < k < 1. Additionally, there is a
maximum R(m,n) value captured by the camera that depends on
the experimental setup. This maximum, Rmax, is empirically de-
termined by displaying a constant white image on the projector and
capturing the reflected cross-talk with the camera in a dark room.
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Camera parameters like exposure time, aperture and gain are fixed
during the Rmax measurement and during system operation. Since
the cross-talk is only caused by the projector, Rmax is only depen-
dent on the system configuration, and not on external conditions like
room light, background, etc. Based on this analysis, the quantity
−(1− k)R(m,n) is bounded by,

−(1− k)Rmax ≤ −(1− k)R(m,n) ≤ 0. (5)

The notation A ≤ B means the color components Ai ≤ Bi,
for all i. If there is no motion, i.e. ΔL(m,n) = 0, then ΔI(m,n)
always falls within the bounds of (5). The quantity ΔL(m,n) in
(4) is not used for the classification, since with motion its bound
is difficult to determine, since it is set by the colors of objects and
backgrounds, illumination, amount of motion, etc.

The binary valued classification mask image P is defined by

P (m,n) =

{
1, if − (1− k)Rmax ≤ ΔI(m,n) ≤ 0

0, otherwise
(6)

Based on mask P , the Pass-Mask algorithm provides the estimate,

L̂2(m,n) = GP (m,n)ΔI(m,n) + I2(m,n). (7)

When P (m,n) = 0, the pixel is definitely affected by motion and
the estimate L̂2(m,n) = I2(m,n) does not reduce cross-talk in
favor of reducing motion artifacts. Local motion is likely to have the
beneficial effect of visually masking the remote cross-talk. When
P (m,n) = 1, the pixel is possibly not affected by motion, and the
cross-talk reduction algorithm (2) is applied. This reconstruction is
called Pass-Mask because binary mask P allows only the selected
pixels to pass to the cross-talk reduction step.
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Fig. 4. Flowchart of the Naive algorithm on the left, and the Pass-
Mask algorithm on the right. The Pass-Mask algorithm substantially
reduces motion artifacts seen in the Naive algorithm.

Figure 4 shows the flowcharts of the naive algorithm on the left,
and the pass-mask algorithm on the right. The diagrams shown are
meant to clarify the differences between the two algorithms, but the
actual implementations combine some of the steps.

4. EXPERIMENTAL RESULTS

4.1. Hardware System and Real-Time Software

The experimental setup of Figure 2 uses an NEC NP-U300X projec-
tor, a HOPS Glass holographic diffusing screen produced by Sax3D,

an nVidia FX4800 graphics board, a Matrox Helios XCL frame grab-
ber, and a Basler a504kc high speed camera. We used the 3D shut-
ter glasses signal (60Hz) from the graphics board to provide syn-
chronization between camera and projector. Hardware and a TI mi-
croprocessor provided a frequency doubler that allowed operation
at 120hz, the maximum display rate of the projector. The camera-
projector timing relationship is shown in Figure 3.

The value k in (1) affects different aspects of the CTM recon-
struction algorithm. Higher k is desired for higher average bright-
ness and less flicker in the displayed video. The average brightness,
with respect to full projection, isB = 0.5(1+k) so that for k = 0.5,
B = 75%. Higher k, on the other hand, causes undesirable amplifi-
cation of noise power (variance), given by H = [( 1

1−k
)
2
+ ( k

1−k
)
2
]

which for k = 0.5 is 5. Higher k is also undesired because G = k
1−k

in (3) also amplifies motion related pixel differences. In practice,
the motion artifacts are much more objectionable than the noise am-
plification (which was not visible in our experimental setting). We
empirically chose k = 0.5 in light of these tradeoffs.

To allow repeatable and quantitative performance testing, we
simulated a video conference by replacing the remote video with
a pre-recorded video of a remote participant, which we projected. A
local user viewed the pre-recorded video and the camera captured
the local user with cross-talk. We implemented software running in
real-time which we can switch between three settings: No process-
ing, Naive, and Pass-mask. Informal visual inspections during sys-
tem operation provided the following findings: 1) Cross-talk with No
processing is noticeable and cross-talk reduction is required, 2)Naive
algorithm works well with little motion in the local signal but an-
noying artifacts are very visible when there is motion in the local
signals. 3)Pass-mask algorithm works well with or without local
motion. The next section provides quantitative simulation results.

4.2. Results and Comparison

Since the performance of cross-talk reduction methods is dependent
on the remote and local signals, we need to use the same remote and
local signals for each reconstruction method to get objective quanti-
tative results and comparisons. Repeating remote signal is straight-
forward since we just need to play the same video on the projector.
However, duplicating the exact same local scene, when there is mo-
tion, is impossible. Thus, we first recorded cross-talk of the remote
signal in a dark room and mixed the recorded cross-talk with another
pre-recorded local video for simulation. Call the local frame L, the
cross-talk frame C, and the reconstructed frame L̂. To obtain quan-
titative cross-talk reduction rates, we define the following quantities:
Power of frame F is P(F) = 1

MN

∑M−1
m=0

∑N−1
n=0 | I(m,n) |2,

where, M and N are the height and width of an image respectively.
The cross-talk residual is Cresidual = L̂ − L, and the cross-talk
reduction rate is η = P(C)−P(Cresidual)

P(C)
.

First, we compare the Pass-Mask algorithm with the Naive algo-
rithm. The Rmax vector measured and used for our experiments is
[68 78 102]T , where 8 bit pixel values are between 0 and 255. Ex-
perimental results are best seen in video, but Figure 5 shows the re-
sults of the Naive algorithm on the left, and the Pass-Mask algorithm
on the right. On the bottom of the arm, and below the shadow of the
hand, the naive algorithm results in very visible artifacts, whereas
the pass-mask algorithm substantially reduces these artifacts.

We operated the real-time cross reduction system for a long time,
with good results. We also stressed the system by using a video with
high motion, an arm waving very fast at about 2 ∼ 3 Hz. Figure 6
shows the cross-talk reduction rate, η, for 155 frames. The observed
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Fig. 5. Results of the Naive algorithm on the left, and the Pass-Mask
algorithm on the right. Note the disturbing white or light haloes
near the arm and the hand’s shadow in the Naive. These artifacts are
not visible in the Pass-Mask results, and although we do not reduce
cross-talk in these regions, it is not noticeable.
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Fig. 6. The red, black, and blue curves are the cross-talk reduction
rates of the Pass-Mask, the Naive, and the method of [5] respectively

periodicity in the plots is caused by first repetitive waving of the
hands and then the body swaying in the test video used for the lo-
cal signal. The average reduction rates of Pass-Mask and Naive are
98.4% and 87.9% respectively. The peak points in the plots corre-
spond to frames with very little motion in the local signal. For those
peak points, the performance of Pass-Mask and Naive are very simi-
lar, as expected, since Pass-Mask reconstruction is identical to Naive
reconstruction when there is no motion in the local signal.

Next, we compare the cross-talk reduction performance of the
Pass-Mask algorithm with the modeling based approach of [5]. From
Figure 6, the Pass-Mask algorithm has higher fluctuation in perfor-
mance than the modeling based method of [5]. This is because the
CTM technique compares two consecutive frames, thus is has lower
performance with motion in the local signal. On the other hand,
the modeling method focuses on the cross-talk itself, thus its per-
formance is fairly independent of the local signal. When there is
little motion in the local signal, the performance of CTM is better
than that of the modeling based method. The average reduction rates
for the Pass-Mask and the modeling based method of [5] are very

similar, 98.4% and 98.8%, respectively.
Compared to prior work, Pass-Mask achieves a high cross-talk

reduction rate without requiring complex and computationally ex-
pensive geometric and photometric modeling of [5], but it does re-
quire camera-projector synchronization. Although the cross-talk re-
duction rate, η, decreases with high motion in the local signal, we
have informally observed that the video quality is high, and the
cross-talk is not seen. The reduction rate is always higher than 97%
and the faint artifacts are masked near the motion boundaries. Thus,
in terms of implementation, computational load, and quantitative and
visual results, the Pass-Mask algorithm using the CTM technique of-
fers an attractive solution for the visual cross-talk reduction problem.

5. CONCLUSIONS

We described a solution to video cross-talk reduction by using tem-
poral modulation of one of the video signals, and the adaptive recon-
struction algorithm called Pass-Mask. This algorithm uses simple,
adaptive operations easily implemented in real-time. The approach
performs well in the presence of motion in the local signal, and the
frequency doubling of the input to the reconstruction system alto-
gether removes the effect of motion in the remote signal. The ap-
proach has been tested using the collaboration testbed described, but
the general approach of intentionally modulating the projector sig-
nal, and subsequently separating the video signals, applies to diverse
system configurations and architectures that require display of one
video signal while capturing another video signal through the same
surface. Even though our experiments used fixed camera settings, as
long as camera automatic gain settings change slower than the 120
Hz, the Pass-Mask algorithm is still effective since it only compares
two consecutive frames. Rmax is affine(i.e. linear with constant
bias) to exposure, so knowing it for two gain settings should allow
gain changes to be tracked without requiring new calibration.
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